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ABSTRACT 

A model for  cosmic ray propagation derived by Jokipi i  i s  

modified t o  take into account -particle mirroring. 

the unreasonable sensi t ivi ty  o f t h e  original theory t o  the  extreme 

high fkequency end of the interplanetary magnetic f i e ld  power 

spectrum P(f ) .  

eff ic ient  for  par t ic les  of known velocity and r ig id i ty  t o  a 

limited portion of the f i e l d  spectrum. 

This removes 

It is  then possible t o  re la te  the diffusion co- 
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The interplanetary magnetic f ield,  a t  l e a s t  up t o  about 

1.2 A.U. f r m t h e  sun, is  knownto be fairly ordered, lying 

principally a t  the  gardenhose angle,’ but with fluctuations of 

the order of 30$ on quiet days and larger  on disturbed days. 

This paper will deal with comic ray propagation on f a i r l y  quiet 

days. 

a r e  believed2 t o  be more important than fluctuations of strength, 

6B, so we sha l l  assume 6B/Bo i s  of the  order of 20$ t o  25$, where 

B i s  the smooth f i e l d  a t  the gardenhose angle. Jokipi i  analyzed 

cosmic ray propagation in a f ie ld  of t h i s  type in  considerable 

detail,3 and showed tha t  the motion perpendicular t o  xo consists 

of slow diff’usion, while t h e  motion along so is controlled by 

diff‘usion i n  p i tch  angle 8 E cos’’ p. Following J ~ k i p i i , ~  we 

denote the direction of xo by z, t he  par t ic le  velocity by V, i t s  

charge by Ze, and i ts  energy by poc  . 

A t  these times, the  fluctuations i n  the  f i e l d  direction 

4 

0 

2 Define w and rC by 
0 

= BoeZ/ymoc = V/rc. The gyro radius i s  rc sin 8. The power 

spectrum of the f i e l d  fluctuation ?$. = 3 - Bo w i l l  be a f’unction 

P(f) of frequency. 

trum P(kVJ2n) of f ie ld  i r regular i t ies  of wave number k being 

carried past the  spacecraft a t  t he  solar wind velocity Vw. 

Before indicating the  change t o  be made i n  the  Jokipi i  theory, 

we review a few key equations and indicate the problem tha t  

wO 
4 

This spectrum is attr ibuted4 t o  a power spec- 
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ar i ses  i n  the  theory when P( f )  f a l l s  off too steeply a t  large f .  

Ignoring the simple, slow diff'usion in  the  XY plane and simplifying 

t o  a time-independent diffusion problem, we obtain f r o m  (526)' 

where we denote by b the  Fokker-Planck coefficient for  diffusion 

i n  ~1 that Jokipi i  denotes by ( (&) ) / A t  2 Substituting n( p.) = 

n ( z )  + n (p) i n  Equation (l), where we assume and& and n1 

are both small, of the same order, and are  both independent of z, 

we obtain 

5 0  1 

In Equation ( 2 ) ,  an intermediate constant of integration was eval- 

uated by requiring tha t  anl/& be bounded a t  p = f 1, and the  

other constant of integration po w i l l  be taken es po = -1 with no 

loss of generality. 

t o  evaluate the  mean streaming velocity V(p) along so, viz: 
The only use t o  be made of Equation (2) is  
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Later, Equation (3) will be modified by deletion of a portion of 

the range of integration around 5 = 0. 

and (JV), which is the definition of the diffisicm coefficient 

D 

By the  use of Equation (3) 

= -noV(p)/(an/az), we obtain (528): zz  

-I 

Physically, Equation (4)  says 

-1 

tha t  t he  diffusion depends on the 

mean drift (p) in Equation (3) ,  which receives a large contribution 

frcun any class of par t ic les  that  are  not scattered much (A small), 

but only a small contribution from par t ic les  that are  scattered 

greatly ( A  large),  and hence find it d i f f icu l t  t o  pass fYeely 

along Bo. 
+ 

The - form of A (  p) and DZz must be found fran P ( f )  . 
Jokipi i  calculates A frm P ( f )  on the basis of two assump- 

t ions:  

much greater than the correlation length along 2," where A t  i s  

t h e  time interval  over which perturbations t o  the orbi t  are  

(a) inrmediately af'ber (JlT), he assumes that "V,At i s  

averaged; 

is the  correlation length of the f i e ld  fluctuations. 

value i s  chosen for A t ,  however, assumption (a) must fail  for  a 

mall percentage of the particles,6 namely, those w i t h  small 

values of 1 p 1 . 

(b) he assumes, as is proper, that rc << L, where L 

Whatever 

Temporarily ignoriug t h i s  diff icul ty ,  however, 
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we pass t o  Jokip i i ' s  resu l t  (JT): 

From Equation ( 5 ) ,  we see tha t  in t h i s  theory - a l l  the scattering 

i s  resonant; each par t ic le  i s  affected only by fluctuations a t  

wave number k, such tha t  traversing the fluctuations a t  speed 

Vz = pV, it sees them at i t s  gyro frequency w0. 

unity, t h i s  means k w r 

of large k are the relevant ones. 

pa r t i c l e  of velocity V and pitch angle 9 resonates w i t h  the part 

of the power spectrum P ( f )  a t  f = fres, where 

If 1 p 1 is  nearly 

-1 , but i f  1 p 1 i s  very small, fluctuations 
C 

Ekplicitely, we see tha t  a 

Since o 4 1 p 15 1, fres varies f ran v w ~ O / 2 n ~  t o  QD for  any class  

of par t ic les  of fixed V. 

above a l imiting frequency, a distressing result.6 

Thus, DZz is sensitive t o  - a l l  frequencies 

It is easy t o  see why t h i s  theory includes only resonant 

The theory is  based on a power ser ies  expansion in scattering. 

%/Bo, and it i s  well known' that the  magnetic manent of a par t ic le  
2 IU? 9 B-l  sin 0 is  conserved t o  all orders i n  5. Since Bo 
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suffers no secular changes i n  the  present theory, the  magnetic mment 

(and hence e )  can suffer secular changes only through the application 

of a resonant f i e l d  fluctuation. 

far ther ,  consider applying Equations (1) t o  ( 5 )  t o  a typical  power-law 

~ p e c t n r m ~ ~ ~ , *  P(f)  = 6/?. 

In order t o  explore t h i s  problem 

A brief calculation gives 

v3-n n-2 n-1 2 
- wO vW BO 

Dm - 

fo r  n < 2 and DZz = OD i f  n 2 2. 

form proportional t o  Rf3, where f3 = V/c and R i s  the  r ig id i ty  R = BoV/wo. 

If n -.) 2 f r a  below, DZz i s  unbounded, but approaches in the  l i m i t  a 

form independent of R as required by Nathan and Van Allen* t o  f i t  cer- 

t a i n  experimental data. 

could f i t  the data with the  Jokipii  theory, provided n M 1.95, say.’’ 

This i s  not satisfactory,  both because it seems arb i t ra ry  and because 

we would be i n  d i f f icu l ty  i f  further experiment should show tha t  P ( f )  

i s  as  steep1’ as l/$ at large f .  

dum3 a modification of h i s  theory tha t  avoids the divergence problem 

for  these spectra, but the modifications t o  be given here have advan- 

tages tha t  w i l l  be pointed out below. 

I f  n = 1, DZz assumes the much-discusseds 

Thus, t o  within experimental accuracy, one 

Jokipi i  has presented in the Adden- 

The key t o  the  solution of the foregoing problem l i e s  i n  

careful  study of the  physical behavior of par t ic les  with small I p 1 . 
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These par t ic les  undergo the least  resonant scattering, according t o  

Equation ( 5 ) ,  since P(f)  -., 0 as  f -., oa.33j13 

mcanent of these par t ic les  i s  very well conserved and when they reach 

a place where 6B i s  sizable, they must mirror. The ones tha t  start 

a t  large values of 6B w i l l ,  of course, pick up additional Vz when 

they reach lower B values, but then the i r  1 p I value w i l l  be large 

and they will be subject t o  scattering by the stronger, lower f re-  

quency part  of P ( f ) .  

i ca l ly  the strong variations of B associated with frequencies w e l l  

below fres, and t h i s  non-resonant contribution t o  the variation of 

p was omitted from the original Jokipii  theory by assumption (a).  

Since GB/Bo i s  of the order of 4 25% in the solar wind, many par- 

t i c l e s  a re  subject t o  mirroring and are  thus not free t o  travel 

along Bo as  easily as  implied by Equations (l), (2), and ( 5 ) .  

may easi ly  ver i fy  tha t  a fluctuation of s ize  6B w i l l  ref lect  a l l  

par t ic les  with 

Thus, the magnetic 

In t h i s  theory, the par t ic les  follow adiabat- 

4 

b e  

To set up a full theorytaking into account mirroring would 

be an extensive undertaking; one would have t o  use stochastic 

theory t o  estimate the frequency of occurrence of 6B as a f’unctional 

of P(f), and one would have t o  generalize Equation (1) t o  allow 
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mirroring. 

remove the  extreme sens i t iv i ty  of Jokip i i ' s  theory t o  the asymp- 

t o t i c  form of P( f ) .  

*me of the solar wind, we r eca l l  t ha t  isotropic equi l ibr ia  

no(z) should s t i l l  exist,14 and tha t  loca l ly  the Jokipi i  scat- 

t e r ing  theory should apply. 

t he  order of one correlation length of 6B, t ha t  we expect t o  find 

mirroring. But the  effect  of t h i s  i s  quite simple: the pa r t i c l e  

j u s t  osc i l la tes  back and for th  u n t i l  it is  scattered enough t o  

get  through the  mirror point. 

fo r  in the Jokipi i  theory.6 

t o  say that par t ic les  with 1 p 1 < b make no average progress 

along go, and so f a i l  t o  contribute t o  the  integral  in Equation ( 3 ) ,  

where %, a mean value of p for mirroring, i s  established by 

typ ica l  f i e l d  fluctuations. 

Here, we present a crude theory that i s  adequate t o  

Regarding the field as s t a t i c  i n  the r e s t  

It is  only over large distances, of 

"his scattering is already accounted 

Therefore, ~ 1 1  t ha t  we need t o  do is 

Thus, we s e t  

where 
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If we apply Equations (2), (3 ' ) ,  (5), and ( 9 )  t o  P( f )  = 6/3, we 

not get 

which defines S(p). 

day conditions, we have S ~ 0 . 7 .  

are sensit ive only t o  frequencies i n  the  range 

Figure 1 shows the form of S(p); under quiet 

Under the new theory, par t ic les  

vwcu0/2nv < fres < VWcu(J2% v 

Applying Equations (10) and (11) t o  the  data for  40 keV electrons 

and 75 MeV protons,' we find t h a t  P ( f )  should be of the form 1/3 
i n  the range approximately 5 x lf4 < f e 1 c/s. This conclusion 

s t i l l  depends, of course, on onlytwo &ta points, and it i s  a l so  

possible tha t  P ( f )  could have been ananalously steep on 25-26 May 

1965 when the  electron data were taken.16 It is  also quite possible 

t h a t  contains fluetuations of a kind tha t  present different 

power spectra t o  a fixed spacecraft and a diffusing cosmic-ray 

par t ic le .  

of f ie ld  l i nes  ma? contribute s ignif icant ly  t o  P ( f ) ,  and yet 

Specifically, discontinuities between adjacent bundles 

par t ic les  of l a w  r ig id i ty  may stay so much within one bundle tha t  



they do not "see" these b 0 ~ n d a r i e s . l ~  

al ternate  method t o  deal with par t ic les  of small 1 p 1 , but t h i s  

method seems l e s s  satisfactory because it requires n1 t o  be a 

very smooth function'" of 9 and it f a i l s  t o  bring aut the l imi t s  

on fres shown i n  Equation (10). 

Jokipi i  has proposed an 

Jokipii  also suggests" that for  par t ic les  such that  the 

old theory gives mean scatter- length X L 3D,,/V < L, the 

scattering theory must be altered and the  simple resul t  DZz = 

LV/3 used. It i s  d i f f icu l t  t o  ccmnment on t h i s  proposal without 

a more t h o r o ~ g h ' ~  analysis of what i s  meant by the "correlation 

length" L, but it is  possible t o  dispose f a i r l y  easi ly  of the 

assertion'' that the present scattering theory fails for 40 keV 

electrons because h < L w 10 h. 

by frequency canponents around 0.5 t o  1.0 c/s and in  t h i s  region 

P ( f )  is  very mall; the major contributions t o  the t o t a l  power 

a re  fran much lawer frequencies. 

ponents, which the electrons follow adiabatically, that  establish 

the  long correlation length quoted by Jokipii .  

length of 10 

coherence Over VW-lf x lo6 = 1000 cycles, which i s  not l ike ly  in 

a disordered medium l i k e  the solar wind. Thus, we believe the 

correlation length of the f ie ld ,  insofar as  it is  pertinent t o  

6 40 keV electrons are scattered 

It i s  these low frequency com- 

A correlation 

km for waves with f w 0.5 c/s wou ld  imply the i r  6 



40 keV electrons, should be taken much smaller. A modification 

of the type suggested by Jokipi i  would be more appropriate when 

the  field power density i n  the  range (Eqpation (11)) is  canparable 

t o  the t o t a l  power density. 

It would  be interest ing t o  apply the resu l t s  found here t o  

the  inward propagation of galactic cosmic rays. 
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FIGURE -ION 

Figure 1 
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EBRATUM 

t o  

An Improved Model for Cosmic Ray Propagation 

After Equation ( 9 )  add the  following: "Since the  mirroring 

pa r t i c l e s  have pi tch angles that  vary from 90" t o  cos'' 

par t i c l e s  repeatedly mirror, it i s  reasonable a l so  t o  se t  A = A(pm) 

for 1 p 1 c pm i n  calculating nl. 

as the  

This w i l l  be done." 

Replace Equation (10) by 

and note the  a l te red  Figure 1 attached. 
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